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1. Introduction 

 

Soil has been acknowledged as one of the main environmental factors governing grape and resulting 

wine characteristics (Van Leeuwen and Seguin, 2006). For that, along with climate, it is a major 

element of the France concept of terroir (Morlat and Bodin, 2006). Soil properties may affect grape 

characteristics to a different extend, depending on the pedo-environmental specificity a vineyard 

district. Thus, the knowledge of the relationships between soil properties and grape characteristics 

becomes a key element for sustainable vineyard management in that district. 

Among soil properties, texture plays a major role (White, 2003). Texture refers to the proportions of 

different-sized particles in a soil. To study the mineral particles of a soil, scientists separate them into 

groups according to size. There are different scheme for classifying soil particles. In all classification 

schemes, the sum of all particles (by weight) less than or equal to 2 mm is equal to 100% and is 

referred as the “fine-earth fraction”. The texture of a soil is not readily subject to change, so it is 

considered a basic property of a soil (Brady and Weil, 2002). 



 

Texture is soil’s most important physical property for grapegrowing, because of its influence on other 

soil properties, crucial to plant growth, such as water intake rates (infiltration), water movements 

through soil (hydraulic conductivity), soil water holding capacity, the easy of tilling the soils, and the 

amount of aeration (which is vital to root growth). Texture also influence soil fertility, and overall vine 

vigor (Rice et al., 2002). 

Based on the above consideration, it would be important to investigate the relationships between soil 

texture and grape in term of relative magnitudes within the boundaries of a vineyard district, where the 

grape composition (Y) can be described as a function of the soil texture (X). Frequently extract the 

information in the response matrix Y by means of descriptor matrix X is done using Partial Least 

Squares regression (Wold et al., 2001) as alternative to ordinary least-squares regression. Both 

explicative and response matrix present compositional data where these particular properties give 

origin to special problems for imputation, and they can rarely be analyzed with traditional PLS. In fact 

the original data values require transforming in order to depict correctly the structures that are 

appropriate to the particular nature of the compositional data. In mathematical terms, a vector 

 is compositional if the elements  (for ) and .  

Compositional data are also special in this respect and careful consideration of the relationships 

between parts of a composition is required before we embark on applying PLS analysis. In literature, 

Hinkle and Rayner (1995) suggested to use a PLS for study the relationship between a matrix of 

compositional data and one response variable. Following the Aitchson’s approach (1986) to 

investigate the relationships between soil texture and grape composition in the Telesina Valley 

vineyard district (Southern Italy) a double logcontrast transformation on is proposed. 

After a preliminarily discussion on the compositional data, the PLS for X and Y compositional data is 

given. Finally, principal results of the relationship between soil texture and grape are presented. 

2. Theory 



 

 

2.1 Compositional data  

 

Define  as positive quantities with the same measurement scale  

 and  the trace of . The vector  is the basis of compositional data and 

 is a composition vector. Moreover two bases  and  are compositional equivalents if 

there exists a positive constant h such that . This equivalence relation partitions the space in 

equivalence classes, called compositions. 

More generally, we define   a compositional data matrix if all elements are positive and each 

row is constrained to the unit-sum  where  and  are vectors of units of J and N 

dimension, respectively. Let Q = NIN − 1̂N1̂N
t⎡⎣ ⎤⎦  be the product between and the usual centering 

projector then  is the covariance matrix of  called crude covariance matrix (Aitchison, 

1986). The unit-sum constraint for each row of  implies four difficulties: 1) Negative bias, 2) 

Subcomposition, 3) Basis, 4) Null correlation. Each row and column of  has zero-sum: 

 where  is a J dimensional vector of zero. Therefore each variable has a covariance 

sum equivalent to negative variance (the first difficulty). No-relationship exists between the crude 

covariance matrix and the crude subcomposition covariance one. Therefore the variation of 

subcomposition can substantially influence the covariance (the second difficulty). Likewise in the 

subcomposition, it is not easy to select a basis  for the composition (which is the third difficulty). 

Like the crude covariance matrix, each row and column of the crude correlation matrix of  has a 

zero-sum. Therefore the correlation between two variables is not free to range over the usual interval 

. The negative bias causes a radical difference from the standard interpretation of correlation 



 

between variables. Zero correlation between two ratios does not mean that there is no association (the 

latter difficulty). Moreover the uninterpretable crude covariance structure is not the only problem of 

compositional data. Unfortunately, compositional data often exhibit curvature when standard 

multivariate methods are employed. 

Aitchison (1986) richly described the properties of compositional data and proposed an alternative 

form of logratio, where the more useful is based a geometric mean . Replacing the natural non-

negative condition by the following stronger assumption of the strict positive quantities: 

. This assumption in economics or marketing science is a problem (Gallo, 2003). 

Nevertheless, as it is fully compatible with the nature of soil texture and grape composition data sets. 

Assuming the strict positive quantities, Aitchison (1982) proposes to transform each element of  

( ) in the logratio log wij g w( )⎡⎣ ⎤⎦ , that because the relative matrix of centred logratio , with 

generic element zij = log wij g w( )⎡⎣ ⎤⎦  is adequate for a low-dimensional description of compositional 

variability. Moreover, a generalization of the logratios – called logcontrasts – have particular and 

researched proprieties in compositional data analysis. Logcontrast of is any loglinear combination 

 with , where of logcontrast with the geometric 

mean  presents the property: .  

 

 

2.2 PLS for compositional data 

 

Let  A = a1,…,ah[ ]  and  B = b1,…,bh[ ]  the first h coefficient vectors with  and , the 

aim of PLS is to search components  and  that maximize 



 

cov2 Xah+1,Ybh+1( )  with normalizations and orthogonal constraints respectively. Maximize 

cov2 Xah+1,Ybh+1( )  with constrained ,  and  with  T = t1,…, th[ ]  is a 

eigenstructure problem that can be solved using Lagrange multipliers. The Lagrangian approach 

becomes particularly difficult and unintuitive when PLS scores are constrained to be uncorrelated. 

Raynes (2000) shows how any constraint of this type can be viewed as an orthogonality constraint, 

with respect to a redefined inner product. And relative inner supremum is a simple principal 

components problem.  

Suppose  A = a1,…,ah[ ]  and  B = b1,…,bh[ ]  the first h coefficient vectors and Q = NIN − 1̂N1̂N
t⎡⎣ ⎤⎦  

is the product between and the usual centering projector then  is the covariance 

matrix of ,  is the covariance matrix of  

 

argmax
a∈ℜJ ;  b∈ℜK

atΣXA= 0̂
btΣY B= 0̂

cov2 Xa,Yb( )
ata( ) btb( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ah+1,bh+1{ }          (1)  

 

 corresponding to the largest eigenvalue  of IJ − Ph
X( )ΣXY IK − Ph

Y( )ΣYX  where 

ΣXY = XtQY ,ΣYX = YtQX , Ph
X = ΣXA AtΣXΣXA( )−1AtΣX( ) , Ph

Y = ΣYB B
tΣYΣYB( )−1BtΣY( ) , 

and bh+1 = IJ − Ph
X( )ΣYXah+1 . 

Let  and  be the matrix of a centred logratio with one-sum for each row and column. 

The covariance matrix ΣZ  has the property ΣZ 1̂J = 0̂J  and PJ
⊥ΣZ = ΣZ  where PJ

⊥ = IJ − 1̂J
t 1̂J J( ) . 

Similarly, the covariance matrix ΣV  has the property ΣV 1̂K = 0̂K  and PK
⊥ΣV = ΣV  where 



 

PK
⊥ = IK − 1̂K

t 1̂K K( ) . Every linear combination of  and  is equivalent to zero, because 

 and  then the vectors  a = a1,…, a J[ ]  and  b = b1,…,bK[ ]  have zero-sum: 

 and . Aim of PLS on compositional data is to maximize cov2 Za,Yb( )  subject to 

the usual constraints of PLS plus the additional constraints that each coefficient vector has zero-sum: 

 a
t 1̂J = 0  and .  

To obtain the solutions we define  A = a1,…,ah[ ]  and  B = b1,…,bh[ ]  the first h coefficient vectors 

(see appendix), 

 

argmax
a∈ℜJ ;  b∈ℜK

atΣZA= 0̂

btΣVB= 0̂
at 1̂J =0; bt 1̂K =0

cov2 Za,Vb( )
ata( ) btb( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= argmax

a∈ℜJ ;  b∈ℜK

atΣZA= 0̂
btΣVB= 0̂

cov2 Za,Vb( )
ata( ) btb( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= ak+1,bk+1{ }    (2) 

 

 

3. Application 

  

3.1. The study area 

 

The Telesina Valley study area is located in the western Benevento province, Campania region, 

Southern Italy, within the boundaries of the middle lower basin of the Calore river, upstreams of the 

confluence of the latter with the Volturno river. The morpho-structural setting of the area is defined by 

the graben of the Calore river Valley delimited to the north and south by the calcareous horst of 

Matese-Monte Maggiore and the Taburno-Camposauro mountain groups, respectively, both of them 



 

extending from east to west of the investigated area. Agricultural land use is dominated by vineyards 

which cover about 6.500 ha (i.e., 25% of the study area).  

Viticulture is practised on eight different landscape units, namely footslope on alluvial-colluvial and 

scree deposits of Taburno-Camposauro mountain range, floodplain, alluvial terraces, terraces of 

complex genesis, intermediate slope belt of alluvial-colluvial aggradation, pediment, sandstone and 

marly hills of Titerno river, terraces on the Campanian ignimbrite. The main soil types associated with 

the above landscape are: typic and fluventic Haplustepts, typic Calciustepts, typic and humic 

Ustifluvents, typic and vitrandic Haplustolls, typic and vitrandic Calciustolls, alfic Ustivitrands, 

vitrandic Haplustals. 

 

3.2 Soil and grape sampling and analysis 

 

The study was conducted on the Falangina cultivar, one the most celebrated white grapes cultivar of 

study area and, more generally, of the Campania region (Monaco et al., 2004). Eight nine sites were 

selected in such a manner to represent, as much as possible, the variability of the vineyard landscape. 

Sampling locations were recorded using a Garmin 12 channels GPS and adjusted through visual 

identification of the sites on 1:10.000 georeferenced colour orthophotographs, under Arc-View GIS 

3.2 environment. The selection of sites was conditioned by both the effective spatial distribution of 

Falanghina vineyards.  

At each sampling site, ten representative vines falling in a unique rectangular plot were selected. At 

harvest, a representative number of grape clusters was collected following the methodology proposed 

by Moio et al. (1999). Berries were pressed for the extraction of juice which was analysed for 

titratable acidity (TAc), malic acid (Mal), tartaric acid (Tar), total soluble solids (Brix ), and pH 

(GpH). TAc, Brix, and GpH were determined according to the Official Analytical Methods (MAF, 

1985); Mal was determined using the enzymatic method (Boehringer, 1983); Tar was determined 



 

using the Rebelein method (Rebelein, 1973). In the late autumn, after the harvest, at each sampling site 

ten replicate soil cores (diameter = 1.91 cm, depth = 0-30 cm) were randomly collected, and mixed, 

leading to one homogenised sample per location. The soil sampling period was planned to reduce as 

much as possible the effects of fertilising supply, the latter being usually supplied in early spring. Soil 

samples were air dried, grounded to pass a <2mm sieve, and then analysed in duplicate according to 

the Italian Official Methods for Soil Analysis (MIPAF, 2000) for the determination of soil texture, 

with reference to the following particle size classes: coarse sand (size limits 2.0-0.2 mm), fine sand 

(0.02-0.05 mm), coarse silt (0.05-0.02 mm), fine silt (0.02-0.002 mm), clay (< 0.002 mm).  

 

3.3 Results and discussion 

 

Table 1 shows the principal statistical parameters of PLS for compositional data. In this case, with two 

components, the model assures a good value of X and Y variation. Moreover the predictive ability for 

the first components measured by the Q2 is 0.686 and for the second is 0.116.  

 

Num. Com. R2X  Eig  R2Y  Q2 

1  0.567  1.48  0.705  0.686 

2  0.212  1.67  0.064  0.116 

 

Table 1: Statistical parameters: R2X is the fraction of Sum of Squares (SS) of the entire X's explained, Eig is the 

eigenvalue, R2Y is the fraction of Sum of Squares (SS) of the entire Y’s explained and Q2 is the fraction of the 

total variation of the Y's that can be predicted.  

 



 

The results of the compositional analysis (Fig. 1), highlight, as expected, significant relationships 

among the considered grape variables and demonstrate the influence of soil texture within the specific 

pedo-enviornmental conditions of the Telesina Valley vineyard district.  

 

 

Figure 1: Loading scatter plot. 

 

The projection of Malic acid (Mal) and total soluble solids (Brix) either on the first or second axis are 

far from the centre of axes and positioned in the opposite directions, meaning that a negative 

relationship exist between the above variables. Negative relationships between Mal and Brix are 

known from the literature. Malic acid, along with Tar, slowly increases in concentration until 

veraision. After veraison the concentration of Mal rapidly declines, as a consequence of the reduced 

synthesis, as well as of the metabolic utilisation in replacing glucose as the major respiration substrate, 

particularly during the later stages of ripening. Conversely, as acidity falls during ripening process, 

sugar levels (here express as Brix degrees) increase, mainly as a consequence of increasing synthesis 

of glucose and fructose, which represent the principal grape sugars (Jackson, 2000).  



 

Malic is also positively related to titratable acidity (Tac). As known (Fregoni, 1999, Jackson, 2000), 

malic and tartatic acids (Tar) are, by far, the most important acids found in grapes. As referred 

previously, after veraison the concentration of Mal rapidly decline, as a consequence of the reduced 

synthesis. Different from Mal, Tar content usually tends to stabilise after veraison (Jackson, 1994). 

This acid declines slowly and less intensely than Mal during ripening. Thus the decrease of TAc, 

during ripening, is nearly related to the degradation of malic acid. The positive relationship between 

Mal and TAc explain also the negative relationships between each of the above variables and grape pH 

(GpH). According to Figure 1, Tar is close to the centre of axes, thus it means that some information 

may by carried over on other axes, then any interpretation pertaining this variable might be hazardous. 

Pertaining the relationships between soil texture and grape composition, it can be observed (Fig. 1) 

that 1) coarse and fine sand are positively correlated with Brix (particularly) and GpH, and negatively 

correlated with Mal (particularly) and TAc; b) conversely, coarse silt and clay are negatively 

correlated with the above grape variables, and positively with Mal (particularly) and TAc. All the 

above relationships are explained by the influence of texture on soil temperature and water content. In 

particular, coarser textured soils (i.e. dominated by the sand fraction), who have a better thermal 

conductivity, lead to a good root activity during the vegetative phase and to the reduction of reduction 

of vegetative activity during summer time, when soil profile becomes dry, thus allowing a good 

accumulation of sugars, as well as of aromas and polyphenols in berries (Fregoni, 1999). Finer 

textured soils (i.e., soil dominated by clay and silt fractions) tend to have higher water content than 

coarser textured soils. Water content affects the absorption of nitrogen by vine (Fregoni, 1999), 

besides than dilution phenomenon in the berry juice. It is recognised that as soil water content 

increases, nitrogen uptake also increases. Increasing nitrogen uptake produces increasing vine 

vegetative growth and, subsequently, the reduction of both acids degradation, particularly of Mal and 

sugar accumulation.  
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Appendix 

 

 

argmax
a∈ℜJ ;  b∈ℜK

atΣZA= 0̂

btΣVB= 0̂
at 1̂J =0; bt 1̂K =0

cov2 Za,Vb( )
ata( ) btb( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= arg max

a∈ℜJ

atΣZA= 0̂

at 1̂J =0

1
ata( )

⎧
⎨
⎪

⎩⎪
arg max

  b∈ℜK

btΣVB= 0̂

bt 1̂K =0
 

cov2 Za,Vb( )
btb( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪

 

 

= argmax
a∈ℜJ

atΣZA= 0̂

at 1̂J =0

1
ata( )

⎧
⎨
⎪

⎩⎪
arg max

  b∈ℜK

btΣVB= 0̂

bt 1̂K =0
 

btΣVZaa
tΣZVb

btb( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪

 

 

 

= argmax
a∈ℜJ

atΣZA= 0̂

at 1̂J =0

1
ata( )

⎧
⎨
⎪

⎩⎪
argmax

  b∈ℜK

btΣVB= 0̂

bt 1̂K =0
 

bt I − Ph
V( )ΣVZaa

tΣZV I − Ph
V( )b

btb( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪
 

where Ph
V = ΣVB B

tΣVΣVB( )−1BtΣV( )  and bt I − Ph
V( ) = bt  the inner supremum is a principal 

components problem. The maximum is atΣZV I − Ph
V( )ΣVZa  and b = I − Ph

V( )ΣVZa .  

So  

 



 

 

argmax
a∈ℜJ

atΣZA= 0̂

at 1̂J =0

1
ata( )

⎧
⎨
⎪

⎩⎪
arg max

  b∈ℜK

btΣVB= 0̂

bt 1̂K =0
 

bt I − Ph
V( )ΣVZaa

tΣZV I − Ph
V( )b

btb( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎫
⎬
⎪

⎭⎪
= argmax

a∈ℜJ

atΣZA= 0̂

at 1̂J =0

atΣZV I − Ph
V( )ΣVZa

ata( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=  

 

= argmax
a∈ℜJ

atΣZA= 0̂

at 1̂J =0

at I − Ph
Z( )ΣZV I − Ph

V( )ΣVZ I − Ph
Z( )a

ata( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

≤ argmax
a∈ℜJ

at I − Ph
Z( )ΣZV I − Ph

V( )ΣVZ I − Ph
Z( )a

ata( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= λh+1

 

where Ph
Z = ΣZA AtΣZΣZA( )−1AtΣZ( )  and Σ . Hence I − Ph

Z( )ΣZV I − Ph
V( )ΣVZ I − Ph

Z( )  is the 

largest eigenvalue and  is the corresponding eigenvector. This is the solution sought if there are 

satisfy the constrain atΣZA = 0̂ ,  a
t 1̂J = 0 , and btΣVB = 0̂ , : 

atΣZA =
1

λh+1
ah+1
t I − Ph

Z( )ΣZV I − Ph
V( )ΣVZ I − Ph

Z( )ΣZA

=
1

λh+1
ah+1
t I − Ph

Z( )ΣZV I − Ph
V( )ΣVZ 0̂

= 0̂
 

btΣVB = atΣZV I − Ph
V( )ΣVB = 0̂

 
 
ah+1
t 1̂J =

1
λh+1

ah+1
t I − Ph

Z( )ΣZV I − Ph
V( )ΣVZ I − Ph

Z( )1̂J = 0

  b
t 1̂K = atΣZV I − Ph

V( )1̂K = 0  

 


